Shareprice
13 Dec 2024

Technology

FluoGuide’s proprietary uPAR-targeted luminescent technology platform makes fluorescent molecules bind to the invasive forefront of solid cancers, creating a clear delineation of cancer cells during surgery.

New - New exchange: Nasdaq First North

FluoGuide is moving from Spotlight to Nasdaq First North. Shareholders are strongly encouraged to make sure they will be able to freely trade their shares in the future.

Publications

(Updated September 7 2023)

0. FG001 clinical studies:

Skjøth-Rasmussen, J., Azam, A., Larsen, C.C., Scheie, D., Juhl, K., Kjaer, A. (2022). A new uPAR-targeting fluorescent probe for optical guided intracranial surgery in resection of a meningioma—a case report. Acta Neurochir 164, 267–271. https://doi.org/10.1007/s00701-021-05051-3

1. FG001 in vivo studies:

Karina Juhl M.Sc. Ph.d.1,2, Sorel Kurbegovic MD1, Line Hartvig Ph.d.2, Yvonne M. Adam Ph.d3, Anders Christensen MD Ph.d. 1, Anja R. Jensen Ph.d.3, Andreas Kjaer MD DMSc1 (2022). Performance and in vivo validation of an optical uPAR-targeted probe, ICG-Glu-Glu-AE105 (FG001), for surgical guidance in an orthotopic human xenograft glioblastoma model​​ Poster SNS2022 Karina Juhl_Final

Christensen, A., Juhl, K., Persson, M., Charabi, B. W., Mortensen, J., Kiss, K., … Kjær, A. (2017). uPAR-targeted optical near-infrared (NIR) fluorescence imaging and PET for image-guided surgery in head and neck cancer: proof-of-concept in orthotopic xenograft model. Oncotarget, 8(9), 15407–15419. https://doi.org/10.18632/oncotarget.14282

Juhl, K., Christensen, A., Persson, M., Ploug, M., & Kjaer, A. (2016). Peptide-Based Optical uPAR Imaging for Surgery: In Vivo Testing of ICG-Glu-Glu- AE105. PLoS ONE, 11(2), 1–15. https://doi.org/10.1371/journal.pone.0147428

Juhl, K., Christensen, A., Rubek, N., Schmidt, K. K., Buchwald, C. Von, & Kjaer, A. (2019). Improved surgical resection of metastatic pancreatic cancer using uPAR targeted in vivo fluorescent guidance : comparison with traditional white light surgery. Oncotarget, 10(59), 6308–6316.

Amanda Oester Andersen, Anders Christensen, Karina Juhl, Mads Lawaetz, Christoffer Holst Hahn, Nicklas Rubaek, Irene Wessel, Giedrius Lelkaitis, Katalin Kiss, Natasja Paaske, Anne Poulsen, Christian von Buchwald, Andreas Kjaer (2023). Optical-Guided Surgery in Patients with Oral and Oropharyngeal Squamous Cell Carcinoma (OSCC & OPSCC) Using a Novel uPAR-targeting Near-Infrared Imaging Agent FG001: An Explorative Phase II Clinical Trial – a Case Example Poster

2. FG001, photothermal in vivo study:

Simón, M., Jørgensen, J. T., Juhl, K., & Kjaer, A. (2021). The use of a uPAR-targeted probe for photothermal cancer therapy prolongs survival in a xenograft mouse model of glioblastoma. Oncotarget, 12(14), 1366–1376. https://doi.org/10.18632/oncotarget.28013

3. FG002 in vivo study:

Kurbegovic, S., Juhl, K., Sørensen, K. K., Leth, J., Willemoe, G. L., Christensen, A., … Kjaer, A. (2021). IRDye800CW labeled uPAR-targeting peptide for fluorescence-guided glioblastoma surgery: Preclinical studies in orthotopic xenografts. Theranostics, 11(15), 7159–7174. https://doi.org/10.7150/thno.49787

4. uPAR expression relative to other targets used in image guided surgery

Christensen, A., Grønjøh, C., Jensen, J. S., Lelkaitis, G., Kiss, K., Juhl, K., Charabi, B. W., Mortensen, J., Kjaer, A., Von Buckwald, C. (2022). Expression patterns of uPAR, TF and EGFR and their potential as targets for molecular imaging in oropharyngeal squamous cell carcinoma. Spandidos Publications: Oncology Reports 147. https://www.spandidos-publications.com/10.3892/or.2022.8359

Christensen, A., Kiss, K., Lelkaitis, G., Juhl, K., Persson, M., Charabi, B. W., … von Buchwald, C. (2017). Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR): Tumor expression patterns and prognostic value in oral cancer. BMC Cancer, 17(1), 1–12. https://doi.org/10.1186/s12885-017-3563-3

5. Background on uPAR

Metrangolo, V., Ploug, M., & Engelholm, L. H. (2021). The Urokinase Receptor (uPAR) as a “Trojan Horse” in Targeted Cancer Therapy: Challenges and Opportunities. Cancers, 13(21), 5376. https://doi.org/10.3390/cancers13215376

Kriegbaum, M. C., Persson, M., Haldager, L., Alpizar-Alpizar, W., Jacobsen, B., Gardsvoll, H., … Ploug, M. (2011). Rational targeting of the urokinase receptor (uPAR): development of antagonists and non-invasive imaging probes. Current Drug Targets, 12(12), 1711–1728. https://doi.org/10.2174/138945011797635812

Ploug, M. (2013). Structure-driven design of radionuclide tracers for non-invasive imaging of uPAR and targeted radiotherapy. The tale of a synthetic peptide antagonist. Theranostics, 3(7), 467–476. https://doi.org/10.7150/thno.3791

6. Prognostic value of uPAR expression:

Madunić, J. (2018). The Urokinase Plasminogen Activator System in Human Cancers: An Overview of Its  Prognostic and Predictive Role. Thrombosis and Haemostasis, 118(12), 2020–2036. https://doi.org/10.1055/s-0038-1675399

Persson, M., Nedergaard, M. K., Brandt-Larsen, M., Skovgaard, D., Jørgensen, J. T., Michaelsen, S. R., … Kjaer, A. (2016). Urokinase-Type Plasminogen Activator Receptor as a Potential PET Biomarker in  Glioblastoma. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine, 57(2), 272–278. https://doi.org/10.2967/jnumed.115.161703

Lu, J.-J., Guo, H., Gao, B., Zhang, Y., Lin, Q.-L., Shi, J., … Liu, J. (2018). Prognostic value of urokinase plasminogen activator system in non-small cell lung  cancer: A systematic review and meta-analysis. Molecular and Clinical Oncology, 8(1), 127–132. https://doi.org/10.3892/mco.2017.1484

Borgfeldt, C., Hansson, S. R., Gustavsson, B., Måsbäck, A., & Casslén, B. (2001). Dedifferentiation of serous ovarian cancer from cystic to solid tumors is associated with increased expression of mRNA for urokinase plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1). International Journal of Cancer, 92(4), 497–502. https://doi.org/10.1002/ijc.1215

7. Market – statistics

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Ostrom, Q. T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S. (2019). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016. Neuro-Oncology, 21, V1–V100. https://doi.org/10.1093/neuonc/noz150

Holmer, H., Lantz, A., Kunjumen, T., Finlayson, S., Hoyler, M., Siyam, A., … Hagander, L. (2015). Global Distribution of Surgeons, Anesthesiologists and Obstetricians. Lancet Global Health, 3(Supplement 2), S9-11.

Sullivan, R., Alatise, O. I., Anderson, B. O., Audisio, R., Autier, P., Aggarwal, A., … Purushotham, A. (2015). Global cancer surgery: Delivering safe, affordable, and timely cancer surgery. The Lancet Oncology, 16(11), 1193–1224. https://doi.org/10.1016/S1470-2045(15)00223-5

8. Special topics

May 10, 2017 Meeting of the Medical Imaging Drugs Advisory Committee (5-ALA). (2017). Retrieved from https://www.fda.gov/media/104856/download

Yousaf-Khan, U., Van Der Aalst, C., De Jong, P. A., Heuvelmans, M., Scholten, E., Lammers, J. W., … De Koning, H. (2017). Final screening round of the NELSON lung cancer screening trial: The effect of a 2.5-year screening interval. Thorax, 72(1), 48–56. https://doi.org/10.1136/thoraxjnl-2016-208655

The National Lung Screening Trial Research Team. (2011). Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N Engl J Med, 365(5), 395–409.

Tapia, V. J., Clary, B., Nguyen, Q. T., Lippman, S. M., Tringale, K. R., Orosco, R. K., … Kane, C. (2018). Positive Surgical Margins in the 10 Most Common Solid Cancers. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-23403-5

Stokes, M. E., Thompson, D., Montoya, E. L., Weinstein, M. C., Winer, E. P., & Earle, C. C. (2008). Ten-year survival and cost following breast cancer recurrence: Estimates from SEER-Medicare data. Value in Health, 11(2), 213–220. https://doi.org/10.1111/j.1524-4733.2007.00226.x